A New Method for Numerical Treatment of Diffusion Coefficients at Control Volume Surfaces

نویسندگان

  • LIU Zhongliang
  • MA Chongfang
چکیده

The diffusion coefficients at control volume surfaces are required in the most-widely used finite-volume method for numerical simulation of convection-diffusion equations. Various interpolation methods for diffusion coefficients at control volume surfaces are briefly discussed and extensively compared with the analytical solutions of both pure diffusion and convection-diffusion problems in this paper. It is found that the harmonic mean method is not as accurate and reliable as it is supposed to be and in reality there are some situations in which it simply fails to work and could not produce physically true results. A new method is thus developed by careful re-examination of the exact meaning of the definition of these control surface diffusion coefficients. The extensive numerical comparisons are given for both the harmonic mean and the present method and the results show that the method proposed in this paper is accurate, reliable and easy to use.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of unsteady flow on airfoils with vibrating local flexible membrane

  Unsteady flow separation on the airfoils with local flexible membrane (LFM) has been investigated in transient and laminar flows by the finite volume element method. A unique feature of the present method compared with the common computational fluid dynamic softwares, especially ANSYS CFX, is the modification using the physical influence scheme in convection fluxes at cell surfaces. In contr...

متن کامل

Numerical Simulation of the Hydrodynamics of a Two-Dimensional Gas—Solid Fluidized Bed by New Finite Volume Based Finite Element Method

n this work, computational fluid dynamics of the flow behavior in a cold flow of fluidized bed is studied. An improved finite volume based finite element method has been introduced to solve the two-phase gas/solid flow hydrodynamic equations. This method uses a collocated grid, where all variables are located at the nodal points. The fluid dynamic model for gas/solid two-phase flow is based on ...

متن کامل

Introduced a Modified Set of Boundary Condition of Lattice Boltzmann Method Based on Bennett extension in Presence of Buoyancy Term Considering Variable Diffusion Coefficients

Various numerical boundary condition methods have been proposed to simulate various aspects of the no-slip wall condition using the Lattice Boltzmann Method. In this paper, a new boundary condition scheme is developed to model the no-slip wall condition in the presence of the body force term near the wall which is based on the Bennett extension. The error related to the new model is smaller tha...

متن کامل

Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients

In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...

متن کامل

Stability and numerical solution of time variant linear systems with delay in both the state and control

In this paper, stability for uncertain time variant linear systems with time delay is studied. A new sufficient condition for delay-dependent systems is given in matrix inequality form which depends on the range of delay. Then, we introduce a new direct computational method to solve delay systems. This method consists of reducing the delay problem to a set of algebraic equations by first expand...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003